ELECTRIC DIPOLE MOMENT OF NAPHTHALENE TETRACHLORIDE, DI-n-AMYLAMINE, TRI-n-AMYLAMINE AND DI-ALLYLAMINE

B. KRISHNA, B. B. L. SAXENA and S. C. SRIVASTAVA University of Allahabad, Allahabad, INDIA

(Received 11 August 1965; in revised form 25 November 1965)

Abstract—Electric dipole moments of naphthalene tetrachloride, di-n-amylamine, tri-n-amylamine and di-allylamine have been determined in benzene solution at 1 Mc/s. The results have been discussed in the light of molecular structure of these compounds.

THE apparatus employed has been described earlier.^{1,2} The exact resonance point was obtained by means of a cathode ray tube which was used to observe Lissajous figures produced by beat frequency and 50 c/s main frequency. The last traces of moisture in di-n-amylamine, tri-n-amylamine and di-allylamine (Fluka AG, Buchs SG) were removed by distillation and the fractions boiling at 194–196°; 245–249° and 109–110° respectively, were collected and employed for measurement. Benzene (A.R., B.D.H. grade) was distilled in a quick fit apparatus and fraction boiling at $78\cdot5-79\cdot5^\circ$ was collected. Naphthalene tetrachloride (A.R., B.D.H. grade) was used without any further purification.

The polarization at infinite dilution was calculated by employing the Halverstadt and Kumler³ equation in the form:

$$P_{2\infty} = \frac{M_1 3\alpha v_1}{(\varepsilon_1 + 2)^2} \left(M_1 \beta + M_2 v_1 \right) \frac{(\varepsilon_1 - 1)}{(\varepsilon_1 + 2)} \tag{1}$$

where M_1 and M_2 are the mol. wt. of solvent and solute respectively; α and β are defined by the expression:

$$\varepsilon_{12} = \varepsilon_1 + \alpha f_2 \tag{2}$$

and

$$v_{12} = v_1 + \beta f_2 \tag{3}$$

where f_2 represents the mole fraction of the solute; ε_1 and ε_{12} are the dielectric constants of the pure solvent and the solution respectively; v_1 and v_{12} represent the specific volumes of the pure solvent and the solution respectively. The values of the various quantities measured are given in Tables 1-4. The values of α , β , v_1 and ε_1 were calculated by the method of least squares.⁴

¹ B. Krishna and K. K. Srivastava, J. Chem. Phys. 27, 835 (1957).

^a I. F. Halverstadt and W. T. Kumler, J. Amer. Chem. Soc. 64, 2988 (1942).

⁸ B. Krishna and K. K. Srivastava, J. Chem. Phys. 32, 663 (1960).

⁴ J. W. Mellor, *Higher Mathematics for students of Chemistry and Physics* p. 326. Dover Publications, New York (1954).

S. No.	fs	ε_{13}	ν_{12}
1	0.00087	2.3157	1.1440
2	0-00173	2.3278	1.1424
3	0.00269	2.3471	1.1407
4	0-00355	2·36 07	1.1394
5	0.00443	2.3710	1.1381
6	0.00526	2.3843	1.1368
7	0.00679	2.4053	1.1330
$\alpha = 15$	·8597	$M_1 = 78$	·19
$\beta = -1$	·7758	$M_1 = 269$	·84
$\epsilon_1 = 2$	-3021	$P_{\bullet} = 63$	02
$v_1 = 1$	·1461	$P_{s\infty}=282$	·1183
	$\mu = 3.27$	× 10 ⁻¹⁸ e.s.u	

 TABLE 1. NAPHTHALENE TETRACHLORIDE IN BENZENE (TEMP 25°)

TABLE 2. DI-D-AMYLAMINE IN BENZENE (TEMP 25°)

S. No.	ſı	£18	v ₁₈	
 1	0.00465	2.2812	1.1494	
2	0.00618	2.2864	1.1502	
3	0.00648	2.2880	1.1508	
4	0.01114	2.2909	1.1515	
5	0.01674	2.2998	1.1519	
6	0.02234	2.3098	1-1538	
7	0.02872	2.3229	1.1556	
 $\alpha = 1.52$	228	$M_1 = 78$	19	
$\beta = 0.2$	199	$M_{1} = 157$	00	
$\varepsilon_1 = 2 \cdot 2'$	758	$P_{\bullet} = 51$	99	
$\bar{v_1} = 1.14$	4 77	$P_{100} = 81$	·24	
-	$\mu = 1.20$	$\times 10^{-18}$ e.s.u	•	

TABLE 3. TRI-n-AMYLAMINE IN BENZENE (TEMP 25°)

S. No.	ſı	ε_{12}	v_{12}
1	0.00158	2.2815	1.1475
2	0.00315	2 ·2869	1.1482
3	0.00469	2.2892	1.1483
4	0.00861	2.2903	1.1498
5	0.01091	2.2916	1.1506
6	0.01402	2.2950	1.1516
7	0.01912	2.2960	1.1532
$\alpha = 0$	7168	$M_1 = 78$	 19
$\beta = 0$	3584	$M_{1} = 227$	•00
$\epsilon_1 = 1 \cdot 2$	1469	$P_{\bullet} = 75$	·31
$v_1 = 2 \cdot 2$	2837	$P_{100} = 96$	·8870
-	$\mu = 1.03$	× 10-18 esu	

Electric dipole moment of naphthalene tetrachloride

S. No.	f1	ε ₁₃	¥18
1	0.00359	2.2959	1.1487
2	0.00719	2.3038	1.1492
3	0.01071	2.3069	1.1498
4	0.01436	2.3156	1.1504
5	0.01950	2.3315	1.1514
6	0.02652	2.3356	1.1524
7	0.03487	2.3484	1.1539
$\alpha = 1 \cdot 2$	7073	$M_1 = 78 \cdot 1$.9
$\beta = 0.1$	1664	$M_{1} = 97.0$	0
$\varepsilon_1 = 2 \cdot 2$	2764	$P_{\bullet} = 32.5$	51
$\nu_1 = 1.1$	1404	$P_{1\infty} = 61.8$	17

TABLE 4. DI-ALLYLAMINE IN BENZENE (TEMP 25°)

The values of dipole moments obtained for amines are of the expected order of magnitude and will not be discussed. As regards naphthalene tetrachloride, the following considerations will show that a value of 3.27 D for the dipole moment is reasonable.

Naphthalene tetrachloride (Fig. 1) is a derivative of tetralin formed by replacement of one hydrogen atom at each of 1, 2, 3 and 4 carbon atoms. The X-ray analysis by Lasheen⁵ shows that the hexane ring has a half-chair structure. Further, the C—Cl bonds in 1 and 4 positions are axial and in 2 and 3 positions are equatorial and they correspond to C_2 symmetry. The C—Cl bonds at 1 and 4 positions are oppositely directed. Consequently, as an approximation the moment due to the C—Cl bonds in 1 and 4 positions may be regarded as cancelled and the resultant moment of naphthalene tetrachloride should be equal to that of 2,3-dichlorotetralin.

FIG. 1

The work of Fujita⁶ shows that dichlorotetralin can occur in various conformations: *cis*-ae, *cis*-ea, *trans*-aa, and *trans*-ee, He observed a dipole moment value for 2,3-dichlorotetralin at room temperature of 1.6 D. From this he concluded that 2,3-dichlorotetralin has a *trans* configuration and the apparent observed moment should vary with the abundance ratio of two conformations (i.e. *trans*-aa, and *trans*-ce) at a given temperature unless the energy difference, ΔE , between them is too large.

⁴ M. A. Lasheen, Acta Cryst. 5, 593 (1952).

T. Fujita, J. Amer. Chem. Soc. 79, 2471 (1957).

This abundance ratio is such that 2,3-dichlorotetralin moment should be equal to 1.6 D at room temperature.

However in naphthalene tetrachloride the C—Cl bonds are equatorial⁵ and hence the observed dipole moment of naphthalene tetrachloride should be equal to that of 2,3-dichlorotetralin in the *trans*-ee conformation. The calculations of Fujite⁶ indicate that the dipole moment of 2,3-dichlorotetralin in *trans*-ee conformation should be equal to 3.1 D. Consequently, the observed value of 3.27 D for naphthalene tetrachloride closely agrees with the theoretical value.